Arkansas Grade 8

FlyBy Math[™] Alignment Arkansas Mathematics Curriculum Framework

Strand: Number and Operations

Standard 3: Numerical Operations and Estimation Students shall compute fluently and make reasonable estimates

Student Learning Expectation

NO.3.8.3

Use estimation to solve problems involving rational numbers; including ratio, proportion, percent (increase or decrease) then judge the reasonableness of solutions

FlyBy Math[™] Activities

- -- Predict outcomes and explain results of mathematical models and experiments.
- -- Compare predictions, calculations, and experimental evidence for several aircraft conflict problems.

Strand: Algebra

Standard 4: Patterns. Relations and Functions

Students shall recognize, describe, and develop patterns, relations and functions

Student Learning Expectation

A.4.8.2

Using real world situations, describe patterns in words, tables, pictures, and symbolic representations

FlyBy Math[™] Activities

- --Represent distance, speed, and time relationship for constant speed cases using tables, bar graphs, line graphs, equations, and a Cartesian coordinate system.
- --Use tables, bar graphs, line graphs, equations, and a Cartesian coordinate system to draw conclusions.

A.4.8.3

Interpret and represent a two operation function as an algebraic equation Ex. y=2x+1

- --Represent distance, speed, and time relationship for constant speed cases using linear equations and a Cartesian coordinate system.
- --Interpret the slope of a line in the context of a distancerate-time problem.

Standard 5: Algebraic Representations

Students shall represent and analyze mathematical situations and structures using algebraic symbols

Student Learning Expectation

Solve and graph linear equations (in the form y=mx+b)

FlyBy Math[™] Activities

--Represent distance, speed, and time relationship for constant speed cases using linear equations and a Cartesian coordinate system.

Standard 6: Algebraic Models

Students shall develop and apply mathematical models to represent and understand quantitative relationships

Student Learning Expectation

A.6.8.1

Describe, with and without appropriate *technology*, the relationship between the graph of a line and its equation, including being able to explain the meaning of slope as a constant rate of change (rise/run) and *y-intercept* in real world problems

FlyBy Math[™] Activities

- --Represent distance, speed, and time relationship for constant speed cases using tables, bar graphs, line graphs, equations, and a Cartesian coordinate system.
- --Use tables, bar graphs, line graphs, equations, and a Cartesian coordinate system to draw conclusions.
- --Interpret the slope of a line in the context of a distance-rate-time problem.

A.6.8.2

Represent, with and without appropriate *technology*, *linear* relationships concretely, using tables, graphs and *equations*.

- --Represent distance, speed, and time relationship for constant speed cases using tables, bar graphs, line graphs, equations, and a Cartesian coordinate system.
- --Use tables, bar graphs, line graphs, equations, and a Cartesian coordinate system to draw conclusions.

Standard 7: Analysis of Change Students shall analyze change in various contexts

Student Learning Expectation

A.7.8.1

Use, with and without *technology*, graphs of real life situations to describe the relationships and analyze change including graphs of change (cost per minute) and graphs of accumulation (total cost)

FlyBy Math[™] Activities

- --Compare airspace scenarios for both the same and different starting conditions and the same and different rates.
- --Represent distance, speed, and time relationship for constant speed cases using tables, bar graphs, line graphs, equations, and a Cartesian coordinate system.

Strand: Geometry

Standard 10: Coordinate Geometry

Students shall specify locations and describe spatial relationships using coordinate geometry and other representational systems

Student Learning Expectation

G.10.8.1

Use coordinate geometry to explore the links between geometric and algebraic representations of problems (lengths of segments/distance between points, slope/perpendicular-parallel lines)

FlyBy Math[™] Activities

- --Represent distance, speed, and time relationship for constant speed cases using tables, bar graphs, line graphs, equations, and a Cartesian coordinate system.
- --Explain and justify solutions regarding the motion of two airplanes using the results of plotting points on a schematic of a jet route, on a vertical line graph, and on a Cartesian coordinate system.

Strand: Measurement	
Standard 13: Systems of Measurement Students shall identify and use units, systems and processes of measurement	
Student Learning Expectation	FlyBy Math [™] Activities
M.13.8.1 Draw and apply measurement skills with fluency to appropriate levels of precision	Calculate and measure the position and time of simulated aircraft. Represent that motion using tables, graphs, equations, and experimentation.
M.13.8.3 Apply proportional reasoning to solve problems involving indirect measurements, scale drawings or rates	Calculate and measure the position and time of simulated aircraft. Represent that motion using tables, graphs, equations, and experimentation.
	Apply mathematics to solving distance, rate, and time problems for aircraft conflict scenarios.

Strand: Data Analysis and Probability

Standard 14: Data Representation
Students shall formulate questions that can be addressed with data and collect, organize and display

Student Learning Expectation	FlyBy Math [™] Activities
DAP.14.8.1 Design and conduct investigations which include • adequate number of trials • unbiased sampling • accurate measurement • record-keeping	Conduct simulation and measurement for several aircraft conflict problems. Calculate and measure the position and time of simulated aircraft. Represent that motion using tables, graphs, equations, and experimentation.
DAP.14.8.3 Interpret or solve real world problems using data from charts, line plots, stem-and leaf plots, double-bar graphs, line graphs, boxand whisker plots, scatter plots, frequency tables or double line graphs	Use tables, bar graphs, line graphs, equations, and a Cartesian coordinate system to draw conclusionsExplain and justify solutions regarding the motion of two airplanes using the results of plotting points on a schematic of a jet route, on a vertical line graph, and on a Cartesian coordinate system.